1 (i) Find algebraically the coordinates of the points of intersection of the curve $y=3 x^{2}+6 x+10$ and the line $y=2-4 x$.
(ii) Write $3 x^{2}+6 x+10$ in the form $a(x+b)^{2}+c$.
(iii) Hence or otherwise, show that the graph of $y=3 x^{2}+6 x+10$ is always above the x-axis.

2 Answer part (i) of this question on the insert provided.
The insert shows the graph of $y=\frac{1}{x}$.
(i) On the insert, on the same axes, plot the graph of $y=x^{2}-5 x+5$ for $0 \leqslant x \leqslant 5$.
(ii) Show algebraically that the x-coordinates of the points of intersection of the curves $y=\frac{1}{x}$ and $y=x^{2}-5 x+5$ satisfy the equation $x^{3}-5 x^{2}+5 x-1=0$.
(iii) Given that $x=1$ at one of the points of intersection of the curves, factorise $x^{3}-5 x^{2}+5 x-1$ into a linear and a quadratic factor.

Show that only one of the three roots of $x^{3}-5 x^{2}+5 x-1=0$ is rational.

3 Factorise and hence simplify $\frac{3 x^{2}-7 x+4}{x^{2}-1}$.

4 (i) Prove that 12 is a factor of $3 n^{2}+6 n$ for all even positive integers n.
(ii) Determine whether 12 is a factor of $3 n^{2}+6 n$ for all positive integers n.

5 (i) Write $x^{2}-5 x+8$ in the form $(x-a)^{2}+b$ and hence show that $x^{2}-5 x+8>0$ for all values of x.
(ii) Sketch the graph of $y=x^{2}-5 x+8$, showing the coordinates of the turning point.
(iii) Find the set of values of x for which $x^{2}-5 x+8>14$.
(iv) If $\mathrm{f}(x)=x^{2}-5 x+8$, does the graph of $y=\mathrm{f}(x)-10$ cross the x-axis? Show how you decide.

6 (i) Write $4 x^{2}-24 x+27$ in the form $a(x-b)^{2}+c$.
(ii) State the coordinates of the minimum point on the curve $y=4 x^{2}-24 x+27$.
(iii) Solve the equation $4 x^{2}-24 x+27=0$.
(iv) Sketch the graph of the curve $y=4 x^{2}-24 x+27$.

